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Computing Block-Angular Karmarkar Projections with

Applications to Stochastic Programming

John R. Birgeand Liqun Qi

Abstra: Wr presentf Ia variant of Karmarkar's 7 algorithm for block angular structured linear programs,

such as stochastic linear programs. By computing the projection efficiently, -We give a worst case bound on

the order of the running time that can be an order of magnitude better than that of Karmarkar's standard

algorithm. A related variant is applied to the dual program, and its implications for very large-scale problems

are given. N

Sttstc, an1optngSine

** Department of Aidra Mandheratins ngaieri, TheUirityhia ofd MichaAn Aror, Mate

matics and Statistics, University of Pittsburgh, PA 15213, U.S.A. This author's work was supported by the

1984-965 Andrew Mellon Postdoctoral Fellowship at University of Pittsburgh.

6 ZV4 1



1. Introduction

Block angular and dual block angular linear programs arise in a variety of applications, in particular,

stochastic linear programming. Dual block angular linear programs (see, e.g., [101,121],[291) have the form:
min CoZo + = Cz.

subject to Aozo = bo,
Akzo +WAz, = b,,k - 1,...,N, (1.1)

Z 2! 0, k = 0,...,N,

where the sizes of the matrices are consistent with xk E Rm&, k = 0,..., N, bk E *,"A, k 0 0,..., N, where

m? !5 nk, k = 0,... , N, and we assume Ao and Wk have full row ranks. We also assume that the blocks are

large enough that no _< ,__. ni,.

Stochastic linear programs with fixed recourse (SLPF) with discrete random elements have the form in

(1.1). They can be formulated as:

min CTz +Q(12
subject to Az = b (1.2)

z >0,

where
N

12(Z) = PhQ(;Z
k= 1

and for each k = I,-..., N, the recourse cost Q(z, fh) is obtained by solving the recourse problem:

Q(z, fh) = inf (qhy I Wy-= hk - T*z, yE R'+'),

= (q", h, 7h),

pk = prob (,) = f'1.

Substituting the expressions for 9 in (1.2) , we obtain a problem in the form of (1.1) with W -W,,

Tb = a, and pl = c, for k 1,..., N. This problem has n = no + Nn, variables and m = mo + Nm

constraints. The methods for solving it include: the L-shaped method, proposed by Van Slyke and Wets 1251;

the decomposition method, proposed by Dantsig and Madansky 1111; and the basis factorization method,

proposed by Strasicky [231, and modified by Kall 1171 and Wets [271. The first method directly solves SLPF

in form (1.1), while the other two solve the dual. Birge 131[41 discusses the relationship among them. Also

e [271l281 for other reference.
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If T, ... TN, then (1.1) has a staircase structure. This type of problem is widely encountered in the

context of dynamical systems, i.e., discrete versions of continuous linear programs or linear control problems

[71[81[131[211[251[281.

In this paper, we study the approach of Karmarkar's projective algorithm for linear programming [19]

to solve (1.1). We show that the worst-case performance bound can be improved for this special structure

by reducing the complexity of computing the projections. For large k no - n1 ), this improvement is

an order of magnitude. We also show that refinements of a special case of (1.1) can be solved in at most a

number of iterations which is linear in the additional data. These results indicate the potential of interior

point methods in stochastic linear programming, but extensive computational studies will be required to

determine their practical average-case behavior.

A standard form version of Karmarkar's algorithm is briefly described in Section 2. For L, the length of

the input, this method requires O(nL) iterations. The order of each iteration is dominated by the projection

operation requiring generally O(n3 L) operations. In Section 3, by means of the Sherman-Morrison-Woodbury

formula and block matrix method, we explore the advantage of the special structure of (1.1) and obtain a

method for the projection with order O(N(nI + ngnt + non2 )) = O(n2 L) if no , n1 - N. A further

reduction is possible using rank-one updates of an inverse or Cholesky factorization. Section 4 presents

another variant of Karmarkar's algorithm to solve the dual of (1.1) (with block angular structure). Section

5 describes the implementation of the variants in sequential approximation methods and shows how worst

case bounds can be improved in these procedures. Section 6 provides some special cases where additional

computational savings are possible.

2. Karmarkar's projective algorithm

We briefly describe a standard form versionof Karmarkar's projective algorithm as in Gay[141, Ye30W, or

Lustig120I (with known objective value). We choose the standard form because we believe it is more practical

for computation than various canonical forms. We also assume an unknown objective value and use Todd

and Burrell's 1241 method for updating a lower bound on the objective value. We use an initial lower bound

as is often available in practice. An alternative is Anstreicher's [1] method to obtain an initial lower bound.

3
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Suppose a linear program:

min CTz
subject to Az= b, (2.1)

z >_0.

where z E Rn, c E Z", b E Z-, A E Z"I with optimal value cTz" z.

Suppose that we have a strictly interior feasible point 3 of (2.1), i.e.,

Ad = b,3 > 0, (2.2)

a lower bound 10 on s, and that the set of feasible solutions in (2.1) is bounded. Note that if we do not

have a feasible solution, then we can solve a phase-one problem as in Karmarkar [191.

Karmarkar's algorithm creates a sequence of points z° , zl, ... , z by these steos:

I. z - i,k - 0. A lower bound 10 5 xs.

f. If csz k - A is small enough, i.e., les than a given positive number e, then stop. Otherwise go to 3.

S. Let D = diag({,..., z',), A := [AD, -bj, and let PA be the projection onto the null space of A. Find

U = JA (Dc)

and

and let p(l ) = min(u + L % :i= n,..., i+ 1).

If u(l k ) !5, 6t 1 ' - P.

Otherwise, let 16+ = nin{u%/ud : vi > 0,t = 1,...,n + 1).

4. Let cP = U - I+SV - (CTzh - lb+,)e/(n + 1), where • = ( I I)T .

Let
1 

ae' = -*-i' /(n +i )I1c,11."

Suppose = 1/+j, where j E Wn, E ER. Then zh+ I D1/g+ 1. k = k + 1, go to 1.

4



The main computational effort at each step k is to compute the projections in (2.3). This effort is

generally O(n 3 L). Since this algorithm converges in O(nL) steps (see Ye[301), the algorithm has complexity

O(n 4L 2 ) . Karmarkar (191 uses a rank-one updating scheme to reduce the complexity to O(ni3&L2). We

discuss this approach and a related updating method of Shanno[221 in Section 3.

S. Computation Reduction

We consider (1.1) and assume n, = n2 = N and m, = M2 =mN without loss of generality.

If an element of a vector or a matrix needs to be specified, we use parentheses, e.g., (Ak)ij.

Let n nopi + Nnl 1 m "to0 + NmI,

and

00

Then (1. 1) can be expressed. exactly the same as (2. 1) for application of Karmarkar's algorithm as described
in Section 2. Suppose a = (4F,. . .,a 7)r is the current iteration point of Karniarkar's algorithm. Let

Dh= diag{(as)I,. .. , (a#.)..), D = diag{Do,. .. , ,DN. As discussed in Section 2, the main computational S

work at each step of Karmarkar's algorithm is to compute the projections in (2.3). The projection can be

written as

=A (J.. A 7(AAT)-,A),

where (AAT) - AD 2 AT + bbr :_ M. In this case, the work is dominated by computing M-1 . Using

an explicit inverse would generally not be the most efficient method for computing the projection but the

complexity is the same in other approaches. In the following, we use the inverse notation to simplify our

discussion of reduced complexity order for (1.1). We then describe how this may be used in practice to solve

systems with M.

Theorem 8.1. Let so - -1I2 e 3IROx"I, S,, - WIDh2WM, k -- 1,...,N, S - diag{So,...,SN). Then

S- diag{So,S ,..S;'). Let BI, - (44,,) foe k - 0,..., N,'Do - dka(Do, 1), It and 12 be unit

ov5



matrices in RM +1 and R' O respectively. Let

N

G, (Do)- 2 + L B"S- Bk, G 2 -- -BoOGBTo, (3.1) 'S,5%

k=O

B1  0

If G, is invertible, then G2 and M are invertible and

M-, = ; 1 *- S-1 , T'Bo o11o, 0, 11 0 oT 0 ) "o° (Os-1o %.)"
,5,

Proof: In Karmarkar'a algorithm, a is positive, ie., D is always invertible. Since Wk has full row rank, Sk is

invertible for k = 1, ... ,N. Therefore, S is invertible. Let D = diag{Do, 12). Let

i
G, -BO Boo 12 l)

o= -Bo o 0,

It is seen that M = S + 007. According to the Sherman-Morrison-Woodbury formula 1161, M is invertible

and
M-1 = S-1 _ s-'0( + C TS-oI- jICTS-1

S - , S-'U(D - 2 + UTS-lU)l j S-  (3.3)

= S-1 _ S-IUG-'UTS-1

if and only if (I + CT S-) is invertible, i.e., G is invertible.

Suppose G , is invertible. Since G, is a symmetric matrix, so is G1"1 , and we can write G, 1 1

Gj 1 IGj1 /2 , where Gj1 1 2 is also a symmetric matrix (although possibly complex). Since Ao has full row

rank, BoG' 1/2 also has full row rank. Since no + 1 > mo, G2 = -(BoG 2 )(BG Il/ 2 ) r is also invertible.

It is easy to see that

G,( , BO) ( o, 1( 1 1 )(GT' 0, (, 0I) 1°'

Hence, G is invertible. According to (3.5), M is invertible and (3.4) holdsU

By using (3.2), we can now reduce the complexity of computing the projection PA.

6



Theorem 3.2 (Complexity). Suppose G, is invertible then the overall running time of computing projections

(2.3) is O(N(n' + n'no + no~ni)L).

Proof: At each step, we have for Hi = max{no, nl},

work number of operations

calculate S-1 0(Nn3)I

calculate G, O(Nn 2 no + nin 2)

calculate G2  0(r4)

calculate G-1 and Gil 0(n 3)

multiply A with a vector O(mn-)

multiply S-' with a vector O(mmi)

multiply U with a vector 0(mno)

Other efforts are small compared with the operations above. According to our assumptions, the number

of arithmetic operations is dominated by O(N(nil + n~fno + ning)). Since each arithmetic operation needs

a precision of 0(L) we obtain our conclusion. 0

As we stated above,in practice, we would not compute M- 1 explicitly. The work in (2.3) is dominated

by the effort to solve systems of the form

MV = U.(3.4)

using

v M p - r, (3.5)

where

sp = U

Gj.U'rp, (3.6)

Sr - Uq.

The systems in (3.6) require solving systems with Sh,computation of G, and 02 and solving systems with

G, and G2. In practice, we would find a Choleeky factorisation of each St,, use them to find G, and G2 and

Aind Cholesky factorisations of G, and G2.

7



Karmarkar 1191 used a rank-one updating technique for solving a canonical form linear program. In

this case, we let

-- n -~(z~(3.7)

and update (Dk)ii only if

61(Dh)ij/x + ' i (1/2, 21. (3.8)

In our problem, for each x,(i) such that (3.8) holds, we would update S, S;-, and GI. In k iterations of the

algorithm (where to = z), we would require O(kn 6 ) of these updates. In this case, using (3.2) results in a

complexity of O((n°'rn? +nW+n-)1L 2 ) for the entire algorithm, or, if N - no - ni, O(W-5'?), compared to

Karmarkar's general result of O(nv3 L2 ). For unknown objective values, we could use Karmarkar's canonical

form and (together with the results in the next section) obatain a similar reduction.

Several practical problems occur with using rank-one updates of the explicit inverses. First, we cannot

guarantee the lower bound estimates in our algorithm unless lo = z*. We can, in practice, however, update

Lk only after several iterations or use cTzk (with different termination condition) in place of Lk+I in Step 4

and still achieve low iteration counts (Lustig[201). The second problem is that we cannot guarantee the same

complexity order if we allow the large values of a used in practice (see, e.g., the discussion in [151). Shanno

'S

[221 observed that the complexity can be viewed as a function of a, that no bound on a appears necessary,

and that intervals [11p, pj for p > 2 may also be used in (3.8) to increase computational efficiency.

The third problem in Karmarkar's rank-one updating scheme is its use of explicit inverses. Shanno

also l scribes how to avoid this problem by using Fletcher and Powell's [121 updating formula for Cholesky

factoriszations (with the same complexity order as the inverse updates). This appears to achieve substantial

increases in efficiency. In our came, we would use this procedure to update our Cholesky factorisations of Sh,

G, and G2, and, thereby, achieve a practical and efficient use of our projection method.

4. Dual Formulation

The dual problem to (1.1) can also be solved by a variant of Karmarkar's algorithm. The program has

block-angular structure which leads to computational reductions similar to those of Section 3. An advantage

8
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is also gained for the use of Karmarkar's algorithm in approximation schemes.

The dual of (1.1) is

max bTr EN1 b%

subject to AT wo + ZNAk irk < co (4.1)

An alternative in form (2.1) can be easily obtained. Rewrite (4.1) as

-T

subject to rk'-o Ah 1/k = co, (4.2)

-T_ - T _ 'T T T
whreA0 = A,-~,),~= AT-A,0), 11k -b Uk-b,0) k WkT, _.WT, I)p k-1..N, and

the yk variables are defined accordingly.

The computational effort is again dominated by calculating M- where M - D 2
,AT + cc T for Athe

constraint matrix in (4.2).

AD2 = WT2;D T W,

Not tha I , I DI0

0 .)
WND2Ii 0 ... WDN

Now observe that M =P + UVT where

.T.

p. W, D2TA WD2W, 0o

I C..

0 C

0 C

and 
0 C

V= (W I!D;il C

The Sherman-Morrison-Woodhury formula yields

M1= P-1 - P'IU(I + VTP- IU)-1VT p-1



VI W1.1--, -W W'9 N, T,.I,

Let
N

H = AhD kA,

k=O

Hk= Wk DA, k = 1,..., N,

and
-J T ;W kWk, = ,...,N,

then H-' 0 -..
P-1 -J *HH-* JT1 0 0) 44

(4.4)
00

and

(I+ VTP-IU) I -c H EN HkJ-'k- - /-.k IHr J k H-1c o - Hk JCOJ c)

_ F 4J;jHkH-' I+ cT'H'co + EN..,(c TJ .1H&H-'co + cTJ,;-k

(4.5)

Equations (4.3), (4.4), and (4.5) can then be used to develop another projection method for (4.2).

Theorem 4.2. The overall running time of the projection using (4.3-5) is O(N(n3 + n-,-0 + non2)).

Proof: The computational effort in each step is:

work number of operations

Calculate H- I O(Nn, n)

Calculate J;*, k = I..., N O(Nn3)

Calculate HH-', k = ,...,N O(Nnrna)
Calculate J-",' 1,..., N O(Nn 2ro)

Calculate (I + VTP-IU)- oI(n3 )

Multiply A with a vector O(mno + Nn,(m, + n1 ))

Multiply P-I with a vector O(nii)

Multiply VT with a vector 0(non)

All other effort is dominated by these operations. The number of operations is O(N(n s + nrno + n, 2)),

and the result is obtained as in Theorem 3.2.1

10



Theorem 4.2 gives the same complexity as Theorem 3.2, so, again for N - no - n1 , we have O(n3 L 2 )

complexity for the full algorithm. We can again use Cholesky factorizations to make the projection with

(4.3-5) practical.

5. Dual Use in Approximations

The dual provides an additional benefit. In using (3.1) to approximate a stochastic linear program with

more than N realizations of the random vector bk, additional realizations bN+1,..., bjN+I are added to (3.1)

and the probabilities pk, k = 1,..., N+ l are updated. (See Birge and Wets 16] for procedures to do this.) A

feasible solution to the new problem (3.1) with N' = N + L is not readily found but given a feasible solution

(4.2) another can be found easily if T = T2 =.... =TN = T and q1 =q 2  = q = q. Under these

assumptions let the old solution be (yoId,..., ykd) where

W'Y ,d = kq, k I,.. No

and
N ,

-To d+ZFyod ,

k= 1

where T = (T, -T, 0).

Define a new solution by

anew ,old,

N
On

ew - ( ?Icd)gew k - 1,..., N + 1.

The solution in (5.1) is then feasible in (4.2) with objective value boygld +I/.'jfi b (Z.,P= Id)e •

The total effort for solving the new (4.2) should be less than resolving (3.1) because no procedures to find

a feasible interior point are necessary (assuming, of course, that yold is interior). The objective is generally

close to the old optimal value of (4.2) and should be close to the new optimal value. The effort factor for

the number of iterations to solve the new (4.2) should therefore be much smaller than O(nL).

A similar procedure can be used in the primal problem (3.1) if the randomness is limited to the objective

function, i.e., T T ... T - T and h'-- h h but qi 6 i for all i 96j. Again,a starting

11
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feasible solution can be easily found by letting

Xnew = ld k=0,...,N,

(5.2)
Xnew = rgmin Id{ (Xdi --- I,...,N},= N+ I,...,N+I.

i 6

Now let = n , Zold be the objective of the old (3.1) with zold and let

N+N+L

new PC-TE J9 new + P' new4 new.new CZ
i"--N+1

The new initial objective value in (3.1) is then

N
e (1 - p)cTzod + new" ld + ZOPne Tq" T J "X" + newI

WI' "= 1

and we wish to find
N

e l d + E p(w + X, 5.3)

j=1

where z;V = pcTzo + == p1 wqizi. Let z" be the optimal value of the old (3.1) and let zold be an

interior solution of the old (3.1) such that Zold < z* + e. Now assume that pneW/(l - P), i.e. that the

old probabilities have the same relative values in the new problem, so that (1 - T)z" is the minimum of
N

(1 - P)cTzo + l 1 pleWq2iz. We then have

Z.ew _<(I- )Zod + maX Z V
(5.4)

-* ew -- (1- P)(Zold - e) + min z.

Let L' be the size of the data for the objective and constraints relating only to z'N. This yields the

following result.

Theorem 6.1 The overall running time of Algorithm 3.1 starting from a solution defined by (5.2) for N + I

realizations of the objective qk, assuming T - . - TN+ = T, h= .... nN+l = h, pew/(l ) pld,

and e < 2 9, i O((N + )(n3 + nno + nn)nLL').

Proof: The number of operations per iteration follows from Theorem 3.2. The number of iterations O(nL')

follows from (5.4) for 2 0(L') > Z'V > -20W:).

-T Theorem 5.1 provides a worst-case bound that can be used in solving successively larger stochastic

linear programs. The entire approximating process can then be seen as a variable dimension variant of

12



Karmarkar's algorithm in which the number of iterations is O(lnL') where 1 additional problems of size L'

are added after the initial solution of (3.1).

This result contrasts with the alternative (simplex-based) approaches to stochastic linear programs, for

which, the complexity of solving each new problem depends on the size of the entire problem. Good bounds

on zN' that would often be available in practice could further reduce the computational effort.

For a single SLPF, we can also compare the projective algorithm with simplex- based methods if we

assume average cases for iteration counts. The best available results for stochastic linear programming

appear to be in uses of the L-shaped method of Van Slyke and Wets (Birge 121). It appears that the

running time is typically then O(N-n3 ) - O( n 2) (Birge and Louveaux [51). If we use rank-one updates in the

projective method and assume an average O(logn) iterations as has been conjectured (Karmarkar [181), then

the projective algorithm has running time O(n' 6 logn) (ignoring L which is assumed in both estimates).

This observation combined with the potential for sequential approximation indicates the promise for the

projective algorithm in stochastic linear programming. Further computational experience will be required

to bear this out.

6. Special Cases

The work of the variants of Karmarkar's algorithm is reduced for the following special cases.

(1) Simple recourse (281

In this case, W = (I,-I), where I is the unit matrix in Rmixmi, and n, = 2ml. Write Zk

-),z ,zfor k", for . ,N in (3.1). Let D, = diag(D+,D-} in (3.2), where D+, DE

R"'n xm,, for k = 1,..., N. Then in Theorem 3.1, we have

= WDIWT = (Dk) 2 + (D;)2,
(6.1)

S; =diag(((a+) + (a;)' .. ,..., ((a+),. + (a-,'),

where Dk = diag((a+)i,...,(a+),.) and D" = diag((a),...,(am), for k = 1,...,N. Therefore,

S-1 can be easily calculated in (3.2).

The work is reduced but the order of the algorithm is the same. Similar modifications can be made in

13



the dual approach.

(2) Network recourse [261

In this case,

W (Ej 0)

where E is the network node-arc incidence matrix. The calculation work of Sk and S' can still be reduced

but again the order is the same.
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